Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Infect Dis ; 120: 187-195, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1859784

ABSTRACT

OBJECTIVES: Besides SARS-CoV-2-directed humoral immune responses, T cell responses are indispensable for effective antiviral immunity. Recent data have shown a correlation between COVID-19 symptoms and humoral immune response, but so far, little is known about the association of SARS-CoV-2-directed T cell responses and disease severity. Herein, we evaluated the prevalence of different clinical COVID-19 symptoms in relation to SARS-CoV-2-directed humoral and cellular immune responses. METHODS: The severity of eight different symptoms during acute infection were assessed using questionnaires from 193 convalescent individuals and were evaluated in relation to SARS-CoV-2 antibody levels and intensity of SARS-CoV-2-specific T cell responses 2-8 weeks after positive polymerase chain reaction. RESULTS: Although increased IgG serum levels could be associated with severity of most symptoms, no difference in T cell response intensity between different symptom severities was observed for the majority of COVID-19 symptoms. However, when analyzing loss of smell or taste and cough, awareness of more severe symptoms was associated with reduced T cell response intensities. CONCLUSIONS: These data suggest that rapid virus clearance mediated by SARS-CoV-2-specific T cells prevents severe symptoms of COVID-19.


Subject(s)
COVID-19 , Infections , Antibodies, Viral , Humans , Immunity, Cellular , Immunity, Humoral , Prevalence , SARS-CoV-2
2.
Nature ; 601(7894): 617-622, 2022 01.
Article in English | MEDLINE | ID: covidwho-1528018

ABSTRACT

T cell immunity is central for the control of viral infections. CoVac-1 is a peptide-based vaccine candidate, composed of SARS-CoV-2 T cell epitopes derived from various viral proteins1,2, combined with the Toll-like receptor 1/2 agonist XS15 emulsified in Montanide ISA51 VG, aiming to induce profound SARS-CoV-2 T cell immunity to combat COVID-19. Here we conducted a phase I open-label trial, recruiting 36 participants aged 18-80 years, who received a single subcutaneous CoVac-1 vaccination. The primary end point was safety analysed until day 56. Immunogenicity in terms of CoVac-1-induced T cell response was analysed as the main secondary end point until day 28 and in the follow-up until month 3. No serious adverse events and no grade 4 adverse events were observed. Expected local granuloma formation was observed in all study participants, whereas systemic reactogenicity was absent or mild. SARS-CoV-2-specific T cell responses targeting multiple vaccine peptides were induced in all study participants, mediated by multifunctional T helper 1 CD4+ and CD8+ T cells. CoVac-1-induced IFNγ T cell responses persisted in the follow-up analyses and surpassed those detected after SARS-CoV-2 infection as well as after vaccination with approved vaccines. Furthermore, vaccine-induced T cell responses were unaffected by current SARS-CoV-2 variants of concern. Together, CoVac-1 showed a favourable safety profile and induced broad, potent and variant of concern-independent T cell responses, supporting the presently ongoing evaluation in a phase II trial for patients with B cell or antibody deficiency.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Vaccines, Subunit/immunology , Administration, Cutaneous , Adolescent , Adult , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Clinical Trials, Phase II as Topic , Female , Granuloma/immunology , Humans , Immunogenicity, Vaccine , Interferon-gamma/immunology , Male , Middle Aged , T-Lymphocytes, Helper-Inducer/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/adverse effects , Young Adult
3.
Eur J Immunol ; 51(11): 2651-2664, 2021 11.
Article in English | MEDLINE | ID: covidwho-1366229

ABSTRACT

Both B cells and T cells are involved in an effective immune response to SARS-CoV-2, the disease-causing virus of COVID-19. While B cells-with the indispensable help of CD4+ T cells-are essential to generate neutralizing antibodies, T cells on their own have been recognized as another major player in effective anti-SARS-CoV-2 immunity. In this report, we provide insights into the characteristics of individual HLA-A*02:01- and HLA-A*24:02-restricted SARS-CoV-2-reactive TCRs, isolated from convalescent COVID-19 patients. We observed that SARS-CoV-2-reactive T-cell populations were clearly detectable in convalescent samples and that TCRs isolated from these T cell clones were highly functional upon ectopic re-expression. The SARS-CoV-2-reactive TCRs described in this report mediated potent TCR signaling in reporter assays with low nanomolar EC50 values. We further demonstrate that these SARS-CoV-2-reactive TCRs conferred powerful T-cell effector function to primary CD8+ T cells as evident by a robust anti-SARS-CoV-2 IFN-γ response and in vitro cytotoxicity. We also provide an example of a long-lasting anti-SARS-CoV-2 memory response by reisolation of one of the retrieved TCRs 5 months after initial sampling. Taken together, these findings contribute to a better understanding of anti-SARS-CoV-2 T-cell immunity and may contribute to paving the way toward immunotherapeutics approaches targeting SARS-CoV-2.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Humans , Immunologic Memory , Lymphocyte Activation/immunology
4.
Cancer Discov ; 11(8): 1982-1995, 2021 08.
Article in English | MEDLINE | ID: covidwho-1236486

ABSTRACT

Patients with cancer, in particular patients with hematologic malignancies, are at increased risk for critical illness upon COVID-19. We here assessed antibody as well as CD4+ and CD8+ T-cell responses in unexposed and SARS-CoV-2-infected patients with cancer to characterize SARS-CoV-2 immunity and to identify immunologic parameters contributing to COVID-19 outcome. Unexposed patients with hematologic malignancies presented with reduced prevalence of preexisting SARS-CoV-2 cross-reactive CD4+ T-cell responses and signs of T-cell exhaustion compared with patients with solid tumors and healthy volunteers. Whereas SARS-CoV-2 antibody responses did not differ between patients with COVID-19 and cancer and healthy volunteers, intensity, expandability, and diversity of SARS-CoV-2 T-cell responses were profoundly reduced in patients with cancer, and the latter associated with a severe course of COVID-19. This identifies impaired SARS-CoV-2 T-cell immunity as a potential determinant for dismal outcome of COVID-19 in patients with cancer. SIGNIFICANCE: This first comprehensive analysis of SARS-CoV-2 immune responses in patients with cancer reports on the potential implications of impaired SARS-CoV-2 T-cell responses for understanding pathophysiology and predicting severity of COVID-19, which in turn might allow for the development of therapeutic measures and vaccines for this vulnerable patient population.See related commentary by Salomé and Horowitz, p. 1877.This article is highlighted in the In This Issue feature, p. 1861.


Subject(s)
COVID-19 , Neoplasms , CD4-Positive T-Lymphocytes , Humans , Immunity , Programmed Cell Death 1 Receptor , SARS-CoV-2
5.
Sci Transl Med ; 13(590)2021 04 21.
Article in English | MEDLINE | ID: covidwho-1136061

ABSTRACT

Long-term immunological memory to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for the development of population-level immunity, which is the aim of vaccination approaches. Reports on rapidly decreasing antibody titers have led to questions regarding the efficacy of humoral immunity alone. The relevance of T cell memory after coronavirus disease 2019 (COVID-19) remains unclear. Here, we investigated SARS-CoV-2 antibody and T cell responses in matched samples of COVID-19 convalescent individuals up to 6 months after infection. Longitudinal analysis revealed decreasing and stable spike- and nucleocapsid-specific antibody responses, respectively. In contrast, functional T cell responses remained robust, and even increased, in both frequency and intensity. Single peptide mapping of T cell diversity over time identified open reading frame-independent, dominant T cell epitopes mediating long-term SARS-CoV-2 T cell responses. Identification of these epitopes may be fundamental for COVID-19 vaccine design.


Subject(s)
COVID-19/immunology , Immunologic Memory , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Convalescence , Coronavirus Nucleocapsid Proteins/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Immunodominant Epitopes/immunology , Kinetics , Peptide Mapping , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology
6.
Nat Immunol ; 22(1): 74-85, 2021 01.
Article in English | MEDLINE | ID: covidwho-1065902

ABSTRACT

T cell immunity is central for the control of viral infections. To characterize T cell immunity, but also for the development of vaccines, identification of exact viral T cell epitopes is fundamental. Here we identify and characterize multiple dominant and subdominant SARS-CoV-2 HLA class I and HLA-DR peptides as potential T cell epitopes in COVID-19 convalescent and unexposed individuals. SARS-CoV-2-specific peptides enabled detection of post-infectious T cell immunity, even in seronegative convalescent individuals. Cross-reactive SARS-CoV-2 peptides revealed pre-existing T cell responses in 81% of unexposed individuals and validated similarity with common cold coronaviruses, providing a functional basis for heterologous immunity in SARS-CoV-2 infection. Diversity of SARS-CoV-2 T cell responses was associated with mild symptoms of COVID-19, providing evidence that immunity requires recognition of multiple epitopes. Together, the proposed SARS-CoV-2 T cell epitopes enable identification of heterologous and post-infectious T cell immunity and facilitate development of diagnostic, preventive and therapeutic measures for COVID-19.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , Peptides/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Viral Vaccines/immunology , COVID-19/prevention & control , COVID-19/virology , Cross Reactions/immunology , HLA-DR Antigens/immunology , HLA-DR Antigens/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Immunologic Memory/immunology , SARS-CoV-2/physiology , T-Lymphocytes/metabolism , Viral Vaccines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL